Increased nuclear envelope permeability and Pep4p-dependent degradation of nucleoporins during hydrogen peroxide-induced cell death.
نویسندگان
چکیده
The death of yeast treated with hydrogen peroxide (H(2)O(2)) shares a number of morphological and biochemical features with mammalian apoptosis. In this study, we report that the permeability of yeast nuclear envelopes (NE) increased during H(2)O(2)-induced cell death. Similar phenomena have been observed during apoptosis in mammalian tissue culture cells. Increased NE permeability in yeast was temporally correlated with an increase in the production of reactive-oxygen species (ROS). Later, after ROS levels began to decline and viability was lost, specific nuclear pore complex (NPC) proteins (nucleoporins) were degraded. Although caspases are responsible for the degradation of mammalian nucleoporins during apoptosis, the deletion of the metacaspase gene YCA1 had no effect on the stability of yeast nucleoporins. Instead, Pep4p, a vacuolar cathepsin D homolog, was responsible for the proteolysis of nucleoporins. Coincident with nucleoporin degradation, a Pep4p-EGFP reporter migrated out of the vacuole in H(2)O(2)-treated cells. We conclude that increases in ROS and NPC permeability occur relatively early during H(2)O(2)-induced cell death. Later, Pep4p migrates out of vacuoles and degrades nucleoporins after the cells are effectively dead.
منابع مشابه
Effects of hydrogen peroxide-induced oxidative stress on the pattern of pro-apoptotic and anti-apoptotic genes expression during PC12 cells differentiation
Background and Objective: In neurodegenerative disorders, oxidative stress mediated by reactive oxygen species is strongly associated with increased neuronal damages that lead to apoptosis. Pro-apoptotic and anti-apoptotic gene expressions were changed during cell differentiation that affect cell viability and differentiation. This study was conducted to determine the effects of hydrogen peroxi...
متن کاملA high glucose condition sensitizes human hepatocytes to hydrogen peroxide-induced cell death.
Oxidative stress is known to play a key role in the progression of liver disease, including non-alcoholic steatohepatitis (NASH), which is often accompanied by hyperglycemia. This study examined the influence of high glucose on oxidative stress-induced hepatic cell death. Hc cells, a normal human hepatocyte-derived cell line, were cultured in normal-to-high glucose (5.5-22 mM)-containing medium...
متن کاملEffects of Hydrogen Peroxide Oxidative Stress on the Pattern of Pro-apoptotic and Anti-apoptotic Genes Expression During PC12 Cells Differentiation
Background and Aims:In neurodegenerative disorders,oxidative stress mediated by reactive oxygen species is strongly associated with increased neuronal damages which can lead to apoptosis. Pro-apoptotic and anti-apoptotic gene expressions are changed during the cell differentiation that affect cell viability and differentiation. Therefore, this study was conducted to determine the effects of hyd...
متن کاملOxidative membrane damage and its involvement in gamma radiation-induced apoptotic cell death.
Background: Recent results have provided increasing evidence to support involvement of membrane damage in the mechanism of ionizing radiation induced killing of mammalian cells. These findings have stimulated renewed interest in evaluating the damage to membrane as a primary initiator in radiation-induced cell killing especially in apoptotic death. The present study was aimed to gain deeper ins...
متن کاملMammalian microtubule P-body dynamics are mediated by nesprin-1
Nesprins are a multi-isomeric family of spectrin-repeat (SR) proteins, predominantly known as nuclear envelope scaffolds. However, isoforms that function beyond the nuclear envelope remain poorly examined. Here, we characterize p50(Nesp1), a 50-kD isoform that localizes to processing bodies (PBs), where it acts as a microtubule-associated protein capable of linking mRNP complexes to microtubule...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- FEMS yeast research
دوره 5 12 شماره
صفحات -
تاریخ انتشار 2005